Authors
Eva Bilkova, Roman Pleskot, Sami Rissanen, Simou Sun, Aleksander Czogalla, Lukasz Cwiklik, Tomasz Róg, Ilpo Vattulainen, Paul S Cremer, Pavel Jungwirth, Ünal Coskun
Publication date
2017/3/22
Journal
Journal of the American Chemical Society
Volume
139
Issue
11
Pages
4019-4024
Publisher
American Chemical Society
Description
The orchestrated recognition of phosphoinositides and concomitant intracellular release of Ca2+ is pivotal to almost every aspect of cellular processes, including membrane homeostasis, cell division and growth, vesicle trafficking, as well as secretion. Although Ca2+ is known to directly impact phosphoinositide clustering, little is known about the molecular basis for this or its significance in cellular signaling. Here, we study the direct interaction of Ca2+ with phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), the main lipid marker of the plasma membrane. Electrokinetic potential measurements of PI(4,5)P2 containing liposomes reveal that Ca2+ as well as Mg2+ reduce the zeta potential of liposomes to nearly background levels of pure phosphatidylcholine membranes. Strikingly, lipid recognition by the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely …
Total citations
2017201820192020202120222023202451114261210182
Scholar articles
E Bilkova, R Pleskot, S Rissanen, S Sun, A Czogalla… - Journal of the American Chemical Society, 2017