Authors
Romain A Studer, Ricard A Rodriguez-Mias, Kelsey M Haas, Joanne I Hsu, Cristina Viéitez, Carme Solé, Danielle L Swaney, Lindsay B Stanford, Ivan Liachko, René Böttcher, Maitreya J Dunham, Eulàlia de Nadal, Francesc Posas, Pedro Beltrao, Judit Villén
Publication date
2016/10/14
Journal
Science
Volume
354
Issue
6309
Pages
229-232
Publisher
American Association for the Advancement of Science
Description
Living organisms have evolved protein phosphorylation, a rapid and versatile mechanism that drives signaling and regulates protein function. We report the phosphoproteomes of 18 fungal species and a phylogenetic-based approach to study phosphosite evolution. We observe rapid divergence, with only a small fraction of phosphosites conserved over hundreds of millions of years. Relative to recently acquired phosphosites, ancient sites are enriched at protein interfaces and are more likely to be functionally important, as we show for sites on H2A1 and eIF4E. We also observe a change in phosphorylation motif frequencies and kinase activities that coincides with the whole-genome duplication event. Our results provide an evolutionary history for phosphosites and suggest that rapid evolution of phosphorylation can contribute strongly to phenotypic diversity.
Total citations
201620172018201920202021202220232024110138151714106
Scholar articles
RA Studer, RA Rodriguez-Mias, KM Haas, JI Hsu… - Science, 2016