Authors
Marija Mihailovich, Pierre-Luc Germain, Reinald Shyti, Davide Pozzi, Roberta Noberini, Yansheng Liu, Davide Aprile, Erika Tenderini, Flavia Troglio, Sebastiano Trattaro, Sonia Fabris, Ummi Ciptasari, Marco Tullio Rigoli, Nicolò Caporale, Giuseppe D’Agostino, Alessandro Vitriolo, Daniele Capocefalo, Adrianos Skaros, Agnese Franchini, Sara Ricciardi, Ida Biunno, Antonino Neri, Nael Nadif Kasri, Tiziana Bonaldi, Rudolf Aebersold, Michela Matteoli, Giuseppe Testa
Publication date
2022/10/10
Journal
bioRxiv
Pages
2022.10. 10.511483
Publisher
Cold Spring Harbor Laboratory
Description
Copy number variations (CNVs) at 7q11.23 cause Williams-Beuren (WBS) and 7q microduplication syndromes (7Dup), two neurodevelopmental disorders with shared and opposite cognitive-behavioral phenotypes. Using patient-derived and isogenic neurons, we integrated transcriptomics, translatomics and proteomics to elucidate the molecular underpinnings of this dosage effect. We found that 7q11.23 CNVs cause opposite alterations in neuronal differentiation and excitability. Genes related to neuronal transmission chiefly followed 7q11.23 dosage and appeared transcriptionally controlled, while translation and ribosomal protein genes followed the opposite trend and were post-transcriptionally buffered. Mechanistically, we uncovered REST regulon as a key mediator of observed phenotypes and rescued transcriptional and excitability alterations through REST inhibition. We identified downregulation of global protein synthesis, mGLUR5 and ERK-mTOR pathways activity in steady-state in both WBS and 7Dup, whereas BDNF stimulation rescued them specifically in 7Dup. Overall, we show that 7q11.23 CNVs alter protein synthesis and neuronal firing-established molecular and cellular phenotypes of neurodevelopmental disorders.
Graphical abstract
Total citations
2023202411