Authors
Shaunak Deota, Sivasudhan Rathnachalam, Kanojia Namrata, Mayank Boob, Amit Fulzele, S Radhika, Shubhra Ganguli, Chinthapalli Balaji, Stephanie Kaypee, Krishna Kant Vishwakarma, Tapas Kumar Kundu, Rashna Bhandari, Anne Gonzalez de Peredo, Mithilesh Mishra, Ravindra Venkatramani, Ullas Kolthur-Seetharam
Publication date
2019/5/17
Journal
Journal of molecular biology
Volume
431
Issue
11
Pages
2127-2142
Publisher
Academic Press
Description
Cyclin-dependent kinase 1 (CDK1) is essential for cell-cycle progression. While dependence of CDK activity on cyclin levels is well established, molecular mechanisms that regulate their binding are less understood. Here, we report for the first time that CDK1:cyclin-B binding is not default but rather determined by the evolutionarily conserved catalytic residue, lysine-33 in CDK1. We demonstrate that the charge state of this lysine allosterically remodels the CDK1:cyclin-B interface. Cell cycle-dependent acetylation of lysine-33 or its mutation to glutamine, which mimics acetylation, abrogates cyclin-B binding. Using biochemical approaches and atomistic molecular dynamics simulations, we have uncovered both short-range and long-range effects of perturbing the charged state of the catalytic lysine, which lead to inhibition of kinase activity. Specifically, although loss of the charge state of catalytic lysine did not impact …
Total citations
201920202021202220232024167444