Authors
Venugopalan D Nair, Hanna Pincas, Gregory R Smith, Elena Zaslavsky, Yongchao Ge, Mary Anne S Amper, Mital Vasoya, Maria Chikina, Yifei Sun, Archana Natarajan Raja, Weiguang Mao, Nicole R Gay, Karyn A Esser, Kevin S Smith, Bingqing Zhao, Laurens Wiel, Aditya Singh, Malene E Lindholm, David Amar, Stephen Montgomery, Michael P Snyder, Martin J Walsh, Stuart C Sealfon
Publication date
2024/4/29
Journal
Cell Genomics
Publisher
Elsevier
Description
Regular exercise has many physical and brain health benefits, yet the molecular mechanisms mediating exercise effects across tissues remain poorly understood. Here we analyzed 400 high-quality DNA methylation, ATAC-seq, and RNA-seq datasets from eight tissues from control and endurance exercise-trained (EET) rats. Integration of baseline datasets mapped the gene location dependence of epigenetic control features and identified differing regulatory landscapes in each tissue. The transcriptional responses to 8 weeks of EET showed little overlap across tissues and predominantly comprised tissue-type enriched genes. We identified sex differences in the transcriptomic and epigenomic changes induced by EET. However, the sex-biased gene responses were linked to shared signaling pathways. We found that many G protein-coupled receptor-encoding genes are regulated by EET, suggesting a role for …
Total citations
2023202421