Authors
Takashi Mino, Yasuhiro Murakawa, Akira Fukao, Alexis Vandenbon, Hans-Hermann Wessels, Daisuke Ori, Takuya Uehata, Sarang Tartey, Shizuo Akira, Yutaka Suzuki, Carola G Vinuesa, Uwe Ohler, Daron M Standley, Markus Landthaler, Toshinobu Fujiwara, Osamu Takeuchi
Publication date
2015/5/21
Journal
Cell
Volume
161
Issue
5
Pages
1058-1073
Publisher
Cell Press
Description
Regnase-1 and Roquin are RNA binding proteins essential for degradation of inflammation-related mRNAs and maintenance of immune homeostasis. However, their mechanistic relationship has yet to be clarified. Here, we show that, although Regnase-1 and Roquin regulate an overlapping set of mRNAs via a common stem-loop structure, they function in distinct subcellular locations: ribosome/endoplasmic reticulum and processing-body/stress granules, respectively. Moreover, Regnase-1 specifically cleaves and degrades translationally active mRNAs and requires the helicase activity of UPF1, similar to the decay mechanisms of nonsense mRNAs. In contrast, Roquin controls translationally inactive mRNAs, independent of UPF1. Defects in both Regnase-1 and Roquin lead to large increases in their target mRNAs, although Regnase-1 tends to control the early phase of inflammation when mRNAs are more …
Total citations
201520162017201820192020202120222023202411314049413257413523