Authors
Antonella Caccamo, Caterina Branca, Ignazio S Piras, Eric Ferreira, Matthew J Huentelman, Winnie S Liang, Ben Readhead, Joel T Dudley, Elizabeth E Spangenberg, Kim N Green, Ramona Belfiore, Wendy Winslow, Salvatore Oddo
Publication date
2017/9/1
Journal
Nature neuroscience
Volume
20
Issue
9
Pages
1236-1246
Publisher
Nature Publishing Group US
Description
Alzheimer's disease (AD) is characterized by severe neuronal loss; however, the mechanisms by which neurons die remain elusive. Necroptosis, a programmed form of necrosis, is executed by the mixed lineage kinase domain-like (MLKL) protein, which is triggered by receptor-interactive protein kinases (RIPK) 1 and 3. We found that necroptosis was activated in postmortem human AD brains, positively correlated with Braak stage, and inversely correlated with brain weight and cognitive scores. In addition, we found that the set of genes regulated by RIPK1 overlapped significantly with multiple independent AD transcriptomic signatures, indicating that RIPK1 activity could explain a substantial portion of transcriptomic changes in AD. Furthermore, we observed that lowering necroptosis activation reduced cell loss in a mouse model of AD. We anticipate that our findings will spur a new area of research in the AD field …
Total citations
20172018201920202021202220232024332374864676742
Scholar articles
A Caccamo, C Branca, IS Piras, E Ferreira… - Nature neuroscience, 2017