Authors
Laith R Almazahreh, Federica Arrigoni, Hassan Abul-Futouh, Mohammad El-Khateeb, Helmar Görls, Catherine Elleouet, Philippe Schollhammer, Luca Bertini, Luca De Gioia, Manfred Rudolph, Giuseppe Zampella, Wolfgang Weigand
Publication date
2021/6/2
Journal
ACS Catalysis
Volume
11
Issue
12
Pages
7080-7098
Publisher
American Chemical Society
Description
The synthesis, characterization, and protonation of [Fe2(CO)6{(μ-SCH2)2(Et)P═O}] (1) using the moderately strong acid CF3CO2H (pKaMeCN = 12.7) are reported. Digital simulations of the cyclic voltammetry of 1 in the presence of CF3CO2H and DFT calculations have allowed us to obtain a detailed mechanistic picture of the processes underlying the catalytic hydrogen evolution reaction (HER) that 1 can mediate. Moreover, DFT has shed light on the role of the P═O functionality in the whole catalytic cycle of proton reduction. The reductive behavior of 1 features a double electron transfer with potential inversion, which is associated with deep structural rearrangement of the catalyst. The double reduction appears also functional to the intramolecular proton transfer from the P═O group to the diiron core, a crucial process for the H+/H heterocoupling yielding H2. The key intermediate for the H2 formation and …
Total citations
202120222023202421683