Authors
Fei Zhang, Guang-Hong Yang, Georgi Marko Dimirovski
Publication date
2024/4/11
Journal
IEEE Transactions on Intelligent Vehicles
Publisher
IEEE
Description
This paper studies the optimal encirclement problem for autonomous vehicles along arbitrary patterns subject to safety constraints (i.e., avoidance region). A learning-based safe optimal encircling control scheme is proposed to steer vehicles to pursue the target within arbitrary shapes while minimizing the cost and avoiding obstacles. Specifically, an encirclement orbit generator is explored to produce user-specified reference paths centered on targets, rendering the optimal circling problem converted to an optimal tracking issue with additional safety constraints. Furthermore, by mathematically describing the obstacles as control barrier functions (CBFs), a new Hamilton-Jacobi-Bellman (HJB) equation with CBF constraints is constructed, and then a crucial safety declaration is incorporated into the reinforcement learning (RL) strategy to assure safety. Afterward, an improved critic-only approximator is tailored to …
Total citations
Scholar articles