Authors
VT Nguyen, Ma Qian, Zhiming Shi, Tingting Song, Liqing Huang, Jin Zou
Publication date
2019/1/10
Journal
Materials Science and Engineering: A
Volume
742
Pages
762-772
Publisher
Elsevier
Description
New non-equiatomic Ti(25+x)-Zr25-Nb25-Ta(25-x) (x = 0, 5, 10, 15, 20, in at%) medium entropy alloys (MEAs) have been designed using the atomic mismatch approach and fabricated through a conventional arc-melting process. These novel MEAs were derived from a recently developed equiatomic Ti-Zr-Nb-Ta MEA by gradually replacing its Ta content with Ti. Each non-equiatomic MEA solidified as a single solid-solution phase, which was characterised in detail and compared with Pandat™ simulation and empirical rules. Systematic tensile mechanical property data revealed the existence of a brittle-to-ductile transition for Ti-Zr-Nb-Ta MEAs, i.e., when 15 at% of Ta in the equiatomic Ti25-Zr25-Nb25-Ta25 MEA was replaced by Ti to become a Ti40-Zr25-Nb25-Ta10 MEA. The transition occurs corresponding to a small reduction in atomic mismatch from 4.72% to 4.65% but a signficant drop in nanoindentation …
Total citations
2019202020212022202320243910191017
Scholar articles