Authors
Jeremy A Dahan, AS Morgans, S Lardeau
Publication date
2012/8
Journal
Journal of Fluid Mechanics
Volume
704
Pages
360-387
Publisher
Cambridge University Press
Description
The objective of this numerical study is to increase the base pressure on a backward-facing step via linear feedback control, to be ultimately translated to a drag reduction on a blunt-based bluff body. Two backward-facing step cases are simulated: a laminar two-dimensional (2D) flow at a Reynolds number of , and a turbulent three-dimensional (3D) flow at using large-eddy simulation. The control is effected by a full-span slot jet with zero-net-mass-flux, and two jet locations are examined. Linear system identification is performed to characterize the flow response to actuation, used to synthesize a control law. The control strategy is based on the premise that an attenuation of the instantaneous pressure fluctuations on the base of the step should lead to an increase in the time-averaged base pressure. Open-loop harmonic forcing is examined within a broad frequency range for both the 2D and 3D flows, which are …
Total citations
20132014201520162017201820192020202120222023202423117103762875
Scholar articles