Authors
Jie Xu, Sihong Wang, Ging-Ji Nathan Wang, Chenxin Zhu, Shaochuan Luo, Lihua Jin, Xiaodan Gu, Shucheng Chen, Vivian R Feig, John WF To, Simon Rondeau-Gagné, Joonsuk Park, Bob C Schroeder, Chien Lu, Jin Young Oh, Yanming Wang, Yun-Hi Kim, He Yan, Robert Sinclair, Dongshan Zhou, Gi Xue, Boris Murmann, Christian Linder, Wei Cai, Jeffery B-H Tok, Jong Won Chung, Zhenan Bao
Publication date
2017/1/6
Journal
Science
Volume
355
Issue
6320
Pages
59-64
Publisher
American Association for the Advancement of Science
Description
Soft and conformable wearable electronics require stretchable semiconductors, but existing ones typically sacrifice charge transport mobility to achieve stretchability. We explore a concept based on the nanoconfinement of polymers to substantially improve the stretchability of polymer semiconductors, without affecting charge transport mobility. The increased polymer chain dynamics under nanoconfinement significantly reduces the modulus of the conjugated polymer and largely delays the onset of crack formation under strain. As a result, our fabricated semiconducting film can be stretched up to 100% strain without affecting mobility, retaining values comparable to that of amorphous silicon. The fully stretchable transistors exhibit high biaxial stretchability with minimal change in on current even when poked with a sharp object. We demonstrate a skinlike finger-wearable driver for a light-emitting diode.
Total citations
2017201820192020202120222023202457128162147148152155106
Scholar articles