Authors
Sara KF Stofela, Orhan Kizilkaya, Benjamin T Diroll, Tiago R Leite, Mohammad M Taheri, Daniel E Willis, Jason B Baxter, William A Shelton, Phillip T Sprunger, Kevin M McPeak
Publication date
2020/6
Journal
Advanced Materials
Volume
32
Issue
23
Pages
1906478
Description
Above‐equilibrium “hot”‐carrier generation in metals is a promising route to convert photons into electrical charge for efficient near‐infrared optoelectronics. However, metals that offer both hot‐carrier generation in the near‐infrared and sufficient carrier lifetimes remain elusive. Alloys can offer emergent properties and new design strategies compared to pure metals. Here, it is shown that a noble‐transition alloy, AuxPd1−x, outperforms its constituent metals concerning generation and lifetime of hot carriers when excited in the near‐infrared. At optical fiber wavelengths (e.g., 1550 nm), Au50Pd50 provides a 20‐fold increase in the number of ≈0.8 eV hot holes, compared to Au, and a threefold increase in the carrier lifetime, compared to Pd. The discovery that noble‐transition alloys can excel at hot‐carrier generation reveals a new material platform for near‐infrared optoelectronic devices.
Total citations
2020202120222023202414423
Scholar articles
SKF Stofela, O Kizilkaya, BT Diroll, TR Leite, MM Taheri… - Advanced Materials, 2020