Authors
Chris Marone, CH Scholz
Publication date
1988/6
Journal
Geophysical Research Letters
Volume
15
Issue
6
Pages
621-624
Description
A number of observations indicate that an upper stability transition occurs along well‐developed faults, such as the San Andreas, as a result of unconsolidated gouge within shallow regions of these faults. These observations include the depth distribution of seismicity along faults with and without well‐developed gouge zones, correlations between seismicity and shallow crustal structure, and modeling of coseismic and post‐seismic slip. In addition, recent experimental friction studies indicate that thick layers of simulated gouge exhibit a positive slip‐rate dependence of frictional resistance (velocity strengthening) and thus inherently stable slip, whereas bare rock surfaces and thin gouge layers exhibit potentially unstable velocity weakening behavior. Subduction zones with large accretionary wedges also exhibit an upper stability transition in that slip is aseismic within the accretionary wedge. A stability transition due …
Total citations
198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202445812111012710810961016111081320151813151416242116152516201429215