Authors
Christopher E Wilmer, Michael Leaf, Chang Yeon Lee, Omar K Farha, Brad G Hauser, Joseph T Hupp, Randall Q Snurr
Publication date
2012/2
Journal
Nature chemistry
Volume
4
Issue
2
Pages
83-89
Publisher
Nature Publishing Group UK
Description
Metal–organic frameworks (MOFs) are porous materials constructed from modular molecular building blocks, typically metal clusters and organic linkers. These can, in principle, be assembled to form an almost unlimited number of MOFs, yet materials reported to date represent only a tiny fraction of the possible combinations. Here, we demonstrate a computational approach to generate all conceivable MOFs from a given chemical library of building blocks (based on the structures of known MOFs) and rapidly screen them to find the best candidates for a specific application. From a library of 102 building blocks we generated 137,953 hypothetical MOFs and for each one calculated the pore-size distribution, surface area and methane-storage capacity. We identified over 300 MOFs with a predicted methane-storage capacity better than that of any known material, and this approach also revealed structure–property …
Total citations
20122013201420152016201720182019202020212022202320244679109109959712013012812612713099
Scholar articles
CE Wilmer, M Leaf, CY Lee, OK Farha, BG Hauser… - Nature chemistry, 2012