Authors
Michelle D Leach, David A Stead, Evelyn Argo, Alistair JP Brown
Publication date
2011/3/1
Journal
Molecular Biology of the Cell
Volume
22
Issue
5
Pages
687-702
Publisher
The American Society for Cell Biology
Description
Posttranslational modifications of proteins play critical roles in the control of cellular differentiation, development, and environmental adaptation. In particular, the covalent attachment of the small ubiquitin-like modifier, SUMO, to target proteins (sumoylation) regulates cell cycle progression, transcription, nucleocytoplasmic transport, and stress responses. Here we combine proteomic, molecular, and cellular approaches to examine the roles of sumoylation in the major fungal pathogen of humans, Candida albicans. Using an N-terminally FLAG-tagged SUMO, 31 sumoylated proteins were identified in C. albicans with roles in stress responses (e.g., Hsp60, Hsp70 family members, Hsp104), the cytoskeleton and polarized growth (e.g., Tub1, Cct7, Mlc1), secretion, and endocytosis (e.g., Lsp1, Sec24, Sec7). The output from this proteomic screen was entirely consistent with the phenotypes of C. albicans mutants in which …
Total citations
2011201220132014201520162017201820192020202120222023202418557535685463