Authors
Michele Paulatto, Emilie Hooft, Kajetan Chrapkiewicz, Benjamin Heath, Douglas Toomey, Joanna Morgan
Publication date
2022/10/20
Journal
Frontiers in Earth Science
Pages
https://doi.org/10.3389/feart.2022.97013
Description
Seismic imaging methods have provided detailed three-dimensional constraints on the physical properties of magmatic systems leading to invaluable insight into the storage, differentiation and dynamics of magma. These constraints have been crucial to the development of our modern understanding of magmatic systems. However, there are still outstanding knowledge gaps resulting from the challenges inherent in seismic imaging of volcanoes. These challenges stem from the complex physics of wave propagation across highly heterogeneous low-velocity anomalies associated with magma reservoirs. Ray-based seismic imaging methods such as travel-time and surface-wave tomography lead to under-recovery of such velocity anomalies and to under-estimation of melt fractions. This review aims to help the volcanologist to fully utilize the insights gained from seismic imaging and account for the resolution limits. We summarize the advantages and limitations of the most common imaging methods and propose best practices for their implementation and the quantitative interpretation of low-velocity anomalies. We constructed and analysed a database of 277 seismic imaging studies at 78 arc, hotspot and continental rift volcanoes. Each study is accompanied by information about the seismic source, part of the wavefield used, imaging method, any detected low-velocity zones, and estimated melt fraction. Thirty nine studies attempted to estimate melt fractions at 22 different volcanoes. Only five studies have found evidence of melt storage at melt fractions above the critical porosity that separates crystal mush from mobile magma. The median reported …
Total citations
2022202320242167
Scholar articles
M Paulatto, EEE Hooft, K Chrapkiewicz, B Heath… - Frontiers in Earth Science, 2022