Authors
Wei Li, Sara McMains
Publication date
2011/10/1
Journal
Computer-Aided Design
Volume
43
Issue
10
Pages
1270-1283
Publisher
Elsevier
Description
We present a new approach for computing the voxelized Minkowski sum (excluding any enclosed voids) of two polyhedral objects using programmable Graphics Processing Units (GPUs). We first cull out surface primitives that will not contribute to the final boundary of the Minkowski sum, analyzing and adaptively bounding the rounding errors of the culling algorithm to solve the floating point error problem. The remaining surface primitives are then rendered to depth textures along six orthogonal directions to generate an initial solid voxelization of the Minkowski sum. Finally we employ fast flood fill to find all the outside voxels. We generate both solid and surface voxelizations of Minkowski sums without enclosed voids and support high volumetric resolution of 10243 with low video memory cost. The whole algorithm runs on the GPU and is at least one order of magnitude faster than existing boundary representation …
Total citations
201220132014201520162017201820192020202120222023323425424322