Authors
Louise Gren, Vilhelm B Malmborg, Nicklas R Jacobsen, Pravesh C Shukla, Katja M Bendtsen, Axel C Eriksson, Yona J Essig, Annette M Krais, Katrin Loeschner, Sam Shamun, Bo Strandberg, Martin Tunér, Ulla Vogel, Joakim Pagels
Publication date
2020/6/16
Journal
Atmosphere
Volume
11
Issue
6
Pages
641
Publisher
MDPI
Description
Renewable diesel fuels have the potential to reduce net CO2 emissions, and simultaneously decrease particulate matter (PM) emissions. This study characterized engine-out PM emissions and PM-induced reactive oxygen species (ROS) formation potential. Emissions from a modern heavy-duty diesel engine without external aftertreatment devices, and fueled with petroleum diesel, hydrotreated vegetable oil (HVO) or rapeseed methyl ester (RME) biodiesel were studied. Exhaust gas recirculation (EGR) allowed us to probe the effect of air intake O2 concentration, and thereby combustion temperature, on emissions and ROS formation potential. An increasing level of EGR (decreasing O2 concentration) resulted in a general increase of equivalent black carbon (eBC) emissions and decrease of NOx emissions. At a medium level of EGR (13% intake O2), eBC emissions were reduced for HVO and RME by 30 and 54% respectively compared to petroleum diesel. In general, substantially lower emissions of polycyclic aromatic hydrocarbons (PAHs), including nitro and oxy-PAHs, were observed for RME compared to both HVO and diesel. At low-temperature combustion (LTC, O2 < 10%), CO and hydrocarbon gas emissions increased and an increased fraction of refractory organic carbon and PAHs were found in the particle phase. These altered soot properties have implications for the design of aftertreatment systems and diesel PM measurements with optical techniques. The ROS formation potential per mass of particles increased with increasing engine O2 concentration intake. We hypothesize that this is because soot surface properties evolve with …
Total citations
2020202120222023202416674