Authors
Anthony Azevedo, Ellen Lesser, Brandon Mark, Jasper Phelps, Leila Elabbady, Sumiya Kuroda, Anne Sustar, Anthony Moussa, Avinash Kandelwal, Chris J Dallmann, Sweta Agrawal, Su-Yee J Lee, Brandon Pratt, Andrew Cook, Kyobi Skutt-Kakaria, Stephan Gerhard, Ran Lu, Nico Kemnitz, Kisuk Lee, Akhilesh Halageri, Manuel Castro, Dodam Ih, Jay Gager, Marwan Tammam, Sven Dorkenwald, Forrest Collman, Casey Schneider-Mizell, Derrick Brittain, Chris S Jordan, Michael Dickinson, Alexandra Pacureanu, H Sebastian Seung, Thomas Macrina, Wei-Chung Allen Lee, John C Tuthill
Publication date
2022/12
Journal
BioRxiv
Volume
10
Issue
2022.12
Pages
15.520299
Description
Like the vertebrate spinal cord, the insect ventral nerve cord (VNC) mediates limb sensation and motor control. Here, we applied automated tools for electron microscopy (EM) volume alignment, neuron reconstruction, and synapse prediction to create a draft connectome of the Drosophila VNC. To interpret the VNC connectome, it is crucial to know its relationship with the rest of the body. We therefore mapped the muscle targets of leg and wing motor neurons in the connectome by comparing their morphology to genetic driver lines, dye fills, and x-ray holographic nano-tomography volumes of the fly leg and wing. Knowing the outputs of the connectome allowed us to identify neural circuits that coordinate the wings with the middle and front legs during escape takeoff. We provide the draft VNC connectome and motor neuron atlas, along with tools for programmatic and interactive access, as community resources.
Total citations
2021202220232024111614
Scholar articles