Authors
Alessandro Trovarelli, Jordi Llorca
Publication date
2017/7/7
Journal
ACS catalysis
Volume
7
Issue
7
Pages
4716-4735
Publisher
American Chemical Society
Description
Engineering the shape and size of catalyst particles and the interface between different components of heterogeneous catalysts at the nanometer level can radically alter their performances. This is particularly true with CeO2-based catalysts, where the precise control of surface atomic arrangements can modify the reactivity of Ce4+/Ce3+ ions, changing the oxygen release/uptake characteristics of ceria, which, in turn, strongly affects catalytic performance in several reactions like CO, soot, and VOC oxidation, WGS, hydrogenation, acid–base reactions, and so on. Despite the fact that many of these catalysts are polycrystalline with rather ill-defined morphologies, experimental and theoretical studies on well-defined nanocrystals have clearly established that the exposure of specific facets can increase/decrease surface oxygen reactivity and metal–support interaction (for supported metal nanoparticles), consequently …
Total citations
20172018201920202021202220232024106380127102999250