Authors
Alexander Van Geen, Benjamin C Bostick, Pham Thi Kim Trang, Vi Mai Lan, Nguyen-Ngoc Mai, Phu Dao Manh, Pham Hung Viet, Kathleen Radloff, Zahid Aziz, Jacob L Mey, Mason O Stahl, Charles F Harvey, Peter Oates, Beth Weinman, Caroline Stengel, Felix Frei, Rolf Kipfer, Michael Berg
Publication date
2013/9/12
Journal
Nature
Volume
501
Issue
7466
Pages
204-207
Publisher
Nature Publishing Group UK
Description
Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic. Holocene aquifers are the source of widespread arsenic poisoning across the region,. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more …
Total citations
20122013201420152016201720182019202020212022202320241131418171718271715176
Scholar articles