Authors
Lorenzo Carpentieri, Marco D'Antonio, Kaijie Fan, Luigi Crisci, Biagio Cosenza, Federico Ficarelli, Daniele Cesarini, Gianmarco Accordi, Davide Gadioli, Gianluca Palermo, Peter Thoman, Philip Salzmann, Philipp Gschwandtner, Markus Wippler, Filippo Marchetti, Daniele Gregori, Andrea Rosario Beccari
Publication date
2023/11/12
Book
Proceedings of the SC'23 Workshops of The International Conference on High Performance Computing, Network, Storage, and Analysis
Pages
1790-1800
Description
Over the past few years, the adoption of energy efficiency techniques in modern computer systems is becoming increasingly relevant for sustainable computing. A well-known power management software technique for energy-efficient computing is frequency scaling which modulates the device frequency to explore the energy-performance trade-off. To achieve energy savings, a frequency tuning phase is required because different applications can have different energy and runtime behaviors depending on the frequency setting. Machine learning models can be used to predict energy and runtime, and therefore optimal frequency configurations, based on static or dynamic features extracted from the target application. While general-purpose energy models can be very accurate for a wide range of applications, their accuracy can be limited by the specific input of the target application. We present an energy …
Scholar articles
L Carpentieri, M D'Antonio, K Fan, L Crisci, B Cosenza… - Proceedings of the SC'23 Workshops of The …, 2023