Authors
Qianqian Chen, Qirong Liu, Alp Ozkan, Basab Chattopadhyay, Gilles Wallaert, Kitty Baert, Herman Terryn, Marie-Paule Delplancke-Ogletree, Yves Geerts, François Reniers
Publication date
2018/10/31
Journal
Thin Solid Films
Volume
664
Pages
90-99
Publisher
Elsevier
Description
Atmospheric plasma technology is a promising next-generation alternative for replacing thermal chemical vapor deposition or wet chemical processes for the deposition of functional coatings. In this work, TiO2 films with various morphologies and thicknesses are synthesized in a controllable way by atmospheric Dielectric Barrier Discharges (DBD) under argon/oxygen ambient conditions. This method allows varying the density of the deposited coatings, from low density powders to dense compact anatase layers simple tuning of the parameters. The surface morphology and cross section of the as-synthesized films are observed by scanning electron microscopy (SEM). It is demonstrated that the total flow rate together with the absorbed power have a significant effect on the morphology of the film, which changes from granular to compact film by increasing the total flow rate or decreasing the power. In other words …
Total citations
20192020202120222023202457431