Authors
Costantino Zuccari, Francesco Mazzarini, Enrico Tavarnelli, Giulio Viola, Luca Aldega, Roelant Van der Lelij, Giovanni Musumeci
Publication date
2024/3/7
Source
EGU24
Issue
EGU24-1615
Publisher
Copernicus Meetings
Description
Extensional detachments are commonly considered key structures in accommodating the exhumation of deeply buried or subducted crustal slivers, and in facilitating the syndeformation emplacement of plutons during the evolution of wide rift systems (ie, Basin and Range type). In those settings, ductile shear zones and brittle faults may act for several million years to accommodate important vertical and horizontal displacements such that multiply reactivated and highly complex shear zones and faults may form. The analysis of these complexities, together with the possibility to constrain the age of strain and deformation localisation, is thus pivotal in reconstructing the onset and evolution of the processes that steer (ed) the crustal extension.
Aiming at better understanding these structural/chronological intricacies, we have studied the brittle Mykonos Detachment (MD), which is thought to have facilitated the emplacement of the Mykonos granite starting in the Middle Miocene (~ 14-9 Ma) and following the activation of the earlier (ductile) Livada Detachment (LD) that would have favoured the beginning of pluton cooling during the structuring of the Aegean rifting. The Mid. Miocene age of the MD is, however, only loosely constrained by the stratigraphic age of syn-tectonic siliciclastic deposits in the hanging wall of the fault. No absolute ages exist yet on the activation of the brittle MD or the ductile LD, and a detailed description of the internal architecture of the MD is still not available.