Authors
Jacek Jasieniak, Marco Califano, Scott E Watkins
Publication date
2011/7/26
Journal
ACS nano
Volume
5
Issue
7
Pages
5888-5902
Publisher
American Chemical Society
Description
Through the use of photoelectron spectroscopy in air (PESA), we investigate the size-dependent valence and conduction band-edge energies of CdSe, CdTe, PbS, and PbSe semiconductor quantum dots (QDs). The results are compared to those of previous studies, based on differing experimental methods, and to theoretical calculations based on k·p theory and state-of-the-art atomistic semiempirical pseudopotential modeling. To accurately map out the energy level landscapes of QDs as a function of size, the QDs must be passivated by comparable surface chemistries. This is highlighted by studying the effect of surface chemistry on the valence band-edge energy in an ensemble of 4.7 nm CdSe QDs. An energy level shift as large as 0.35 eV is observed for this system through modification of surface chemistry alone. This shift is significantly larger than the size-dependent valence band-edge shift that is observed …
Total citations
20112012201320142015201620172018201920202021202220232024240555977846393645674564924