Authors
Richard Bintanja
Publication date
2018/10/30
Journal
Scientific reports
Volume
8
Issue
1
Pages
16001
Publisher
Nature Publishing Group UK
Description
The Arctic region is warming two to three times faster than the global mean, intensifying the hydrological cycle in the high north. Both enhanced regional evaporation and poleward moisture transport contribute to a 50–60% increase in Arctic precipitation over the 21st century. The additional precipitation is diagnosed to fall primarily as rain, but the physical and dynamical constraints governing the transition to a rain-dominated Arctic are unknown. Here we use actual precipitation, snowfall, rainfall output of 37 global climate models in standardised 21st-century simulations to demonstrate that, on average, the main contributor to additional Arctic (70–90°N) rainfall is local warming (~70%), whereas non-local (thermo)dynamical processes associated with precipitation changes contribute only 30%. Surprisingly, the effect of local warming peaks in the frigid high Arctic, where modest summer temperature changes exert a …
Total citations
201920202021202220232024142642424916