Authors
Pia Rivetti Di Val Cervo, Roman A Romanov, Giada Spigolon, Débora Masini, Elisa Martín-Montañez, Enrique M Toledo, Gioele La Manno, Michael Feyder, Christian Pifl, Yi-Han Ng, Sara Padrell Sanchez, Sten Linnarsson, Marius Wernig, Tibor Harkany, Gilberto Fisone, Ernest Arenas
Publication date
2017/5
Journal
Nature biotechnology
Volume
35
Issue
5
Pages
444-452
Publisher
Nature Publishing Group US
Description
Cell replacement therapies for neurodegenerative disease have focused on transplantation of the cell types affected by the pathological process. Here we describe an alternative strategy for Parkinson's disease in which dopamine neurons are generated by direct conversion of astrocytes. Using three transcription factors, NEUROD1, ASCL1 and LMX1A, and the microRNA miR218, collectively designated NeAL218, we reprogram human astrocytes in vitro, and mouse astrocytes in vivo, into induced dopamine neurons (iDANs). Reprogramming efficiency in vitro is improved by small molecules that promote chromatin remodeling and activate the TGFβ, Shh and Wnt signaling pathways. The reprogramming efficiency of human astrocytes reaches up to 16%, resulting in iDANs with appropriate midbrain markers and excitability. In a mouse model of Parkinson's disease, NeAL218 alone reprograms adult striatal …
Total citations
201720182019202020212022202320242227375257543822