Authors
JL Bredas, RR Chance, RH Baughman, R Silbey
Publication date
1982/4/1
Journal
The Journal of Chemical Physics
Volume
76
Issue
7
Pages
3673-3678
Publisher
American Institute of Physics
Description
The valence effective Hamiltonian technique is applied to a series of polymers to compute ionization potentials, bandwidths, and band gaps. The polymers considered represent systems of interest to the conducting polymers area and include various derivatives of polyacetylene and polyphenylene, polydiacetylene, polyacene, polybenzyl, and polyyne. The theoretical results for relative ionization potentials are in excellent agreement with available experimental estimates, as well as with the observed behavior of the electrical conductivity of these systems on exposure to weak (I2) versus strong (AsF5) electron acceptors. The bandwidths of the highest occupied band show a qualitative correlation to the conductivities achieved with acceptor doping. Band gaps for the planar systems considered are also in good agreement with experiment.
Total citations
198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202316141128515141216126613884355174341431414423213332
Scholar articles