Authors
Virgil Percec, Tamaz Guliashvili, Janine S Ladislaw, Anna Wistrand, Anna Stjerndahl, Monika J Sienkowska, Michael J Monteiro, Sangrama Sahoo
Publication date
2006/11/1
Journal
Journal of the American Chemical Society
Volume
128
Issue
43
Pages
14156-14165
Publisher
American Chemical Society
Description
Conventional metal-catalyzed organic radical reactions and living radical polymerizations (LRP) performed in nonpolar solvents, including atom-transfer radical polymerization (ATRP), proceed by an inner-sphere electron-transfer mechanism. One catalytic system frequently used in these polymerizations is based on Cu(I)X species and N-containing ligands. Here, it is reported that polar solvents such as H2O, alcohols, dipolar aprotic solvents, ethylene and propylene carbonate, and ionic liquids instantaneously disproportionate Cu(I)X into Cu(0) and Cu(II)X2 species in the presence of a diversity of N-containing ligands. This disproportionation facilitates an ultrafast LRP in which the free radicals are generated by the nascent and extremely reactive Cu(0) atomic species, while their deactivation is mediated by the nascent Cu(II)X2 species. Both steps proceed by a low activation energy outer-sphere single-electron …
Total citations
200720082009201020112012201320142015201620172018201920202021202220232024305354801011391211031071006765595337363817