Authors
Larry G Mastin, Alexa R Van Eaton, Hans F Schwaiger
Publication date
2020
Source
Open-File Report
Issue
2020-1133
Publisher
US Geological Survey
Description
Hanford, Washington (USA) is the construction site of a multi-billion-dollar high-level nuclear waste treatment facility. This site lies 200 kilometers (km) east of Mount St. Helens (MSH), the most active volcano in the contiguous United States. Tephra from a future MSH eruption could pose a hazard to the air intake and filtration systems at this plant. In this report, we present a probabilistic estimate of the amount of tephra that could fall, and the concentrations of airborne ash that could occur at the Hanford Site during a future eruption. Mount St. Helens has produced four large explosive eruptions in approximately the past 500 years, suggesting that its annual probability of eruption (P1) is roughly 4/500= 0.008. Assuming that a large eruption occurs, we calculate the probability (P3| 1) of a given fall deposit thickness or airborne concentration at Hanford by running about 10,000 simulations of ash-producing eruptions using the atmospheric transport model Ash3d. In each simulation, we calculate the pattern of tephra dispersal, deposit thickness at Hanford, and airborne ash concentration at ground level. As input for each simulation, we choose meteorological conditions from a randomly chosen time in the historical record between 1980 and 2010, using data from the European Centre for Medium-Range Weather Forecasting (ECMWF) Reanalysis (ERA) Interim model. The volume (dense-rock equivalent) of each simulated eruption is randomly chosen from a uniform probability distribution on a log scale from the range of magma volumes (0.008–2.3 cubic kilometers [km3]) estimated for late Holocene eruptions at MSH. Plume heights and durations of each …
Total citations
201920202021202214