Authors
Niloofar Karimian, Scott G Johnston, Edward D Burton
Publication date
2017/4/18
Journal
Environmental Science & Technology
Volume
51
Issue
8
Pages
4259-4268
Publisher
American Chemical Society
Description
Jarosite can be an important scavenger for arsenic (As) and antimony (Sb) in acid mine drainage (AMD) and acid sulfate soil (ASS) environments. When subjected to reducing conditions, jarosite may undergo reductive dissolution, thereby releasing As, Sb, and Fe2+ coincident with a rise in pH. These conditions can also trigger the Fe2+-induced transformation of jarosite to more stable Fe(III) minerals, such as goethite. However, the consequences of this transformation process for As and Sb are yet to be methodically examined. We explore the effects of abiotic Fe2+-induced transformation of jarosite on the mobility, speciation, and partitioning of associated As(V) and Sb(V) under anoxic conditions at pH 7. High concentrations of Fe2+ (10 and 20 mM) rapidly (<10 min) transformed jarosite to a green rust intermediary, prior to the subsequent precipitation of goethite within 24 h. In contrast, lower concentrations of Fe …
Total citations
20172018201920202021202220232024113112416162116
Scholar articles