Authors
Edward S Barnard, Ragip A Pala, Mark L Brongersma
Publication date
2011/9
Journal
Nature Nanotechnology
Volume
6
Issue
9
Pages
588-593
Publisher
Nature Publishing Group UK
Description
An increasing number of photonics applications make use of nanoscale optical antennas that exhibit a strong, resonant interaction with photons of a specific frequency. The resonant properties of such antennas are conventionally characterized by far-field light-scattering techniques. However, many applications require quantitative knowledge of the near-field behaviour, and existing local field measurement techniques provide only relative, rather than absolute, data. Here, we demonstrate a photodetector platform that uses a silicon-on-insulator substrate to spectrally and spatially map the absolute values of enhanced fields near any type of optical antenna by transducing local electric fields into photocurrent. We are able to quantify the resonant optical and materials properties of nanoscale (∼50 nm) and wavelength-scale (∼1 µm) metallic antennas as well as high-refractive-index semiconductor antennas. The data …
Total citations
20112012201320142015201620172018201920202021202220232201517665328112
Scholar articles