Authors
Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, Jeff Kusnitz, Michael Debole, Steve Esser, Tobi Delbruck, Myron Flickner, Dharmendra Modha
Publication date
2017
Conference
Proceedings of the IEEE conference on computer vision and pattern recognition
Pages
7243-7252
Description
We present the first gesture recognition system implemented end-to-end on event-based hardware, using a TrueNorth neurosynaptic processor to recognize hand gestures in real-time at low power from events streamed live by a Dynamic Vision Sensor (DVS). The biologically inspired DVS transmits data only when a pixel detects a change, unlike traditional frame-based cameras which sample every pixel at a fixed frame rate. This sparse, asynchronous data representation lets event-based cameras operate at much lower power than frame-based cameras. However, much of the energy efficiency is lost if, as in previous work, the event stream is interpreted by conventional synchronous processors. Here, for the first time, we process a live DVS event stream using TrueNorth, a natively event-based processor with 1 million spiking neurons. Configured here as a convolutional neural network (CNN), the TrueNorth chip identifies the onset of a gesture with a latency of 105 ms while consuming less than 200 mW. The CNN achieves 96.5% out-of-sample accuracy on a newly collected DVS dataset (DvsGesture) comprising 11 hand gesture categories from 29 subjects under 3 illumination conditions.
Total citations
201720182019202020212022202320243173992125159237144
Scholar articles
A Amir, B Taba, D Berg, T Melano, J McKinstry… - Proceedings of the IEEE conference on computer …, 2017