Authors
Daniel Hölbling, Petra Füreder, Francesco Antolini, Francesca Cigna, Nicola Casagli, Stefan Lang
Publication date
2012/5/7
Journal
Remote Sensing
Volume
4
Issue
5
Pages
1310-1336
Publisher
Molecular Diversity Preservation International (MDPI)
Description
Geoinformation derived from Earth observation (EO) plays a key role for detecting, analyzing and monitoring landslides to assist hazard and risk analysis. Within the framework of the EC-GMES-FP7 project SAFER (Services and Applications For Emergency Response) a semi-automated object-based approach for landslide detection and classification has been developed. The method was applied to a case study in North-Western Italy using SPOT-5 imagery and a digital elevation model (DEM), including its derivatives slope, aspect, curvature and plan curvature. For the classification in the object-based environment spectral, spatial and morphological properties as well as context information were used. In a first step, landslides were classified on a coarse segmentation level to separate them from other features with similar spectral characteristics. Thereafter, the classification was refined on a finer segmentation level, where two categories of mass movements were differentiated: flow-like landslides and other landslide types. In total, an area of 3.77 km2 was detected as landslide-affected area, 1.68 km2 were classified as flow-like landslides and 2.09 km2 as other landslide types. The outcomes were compared to and validated by pre-existing landslide inventory data (IFFI and PAI) and an interpretation of PSI (Persistent Scatterer Interferometry) measures derived from ERS1/2, ENVISAT ASAR and RADARSAT-1 data. The spatial overlap of the detected landslides and existing landslide inventories revealed 44.8% (IFFI) and 50.4% (PAI), respectively. About 32% of the polygons identified through OBIA are covered by persistent scatterers data.
Total citations
201220132014201520162017201820192020202120222023202421216111371017191423177