Authors
Ziwei Zhu, Youcun Qi, Qing Cao, Donghuan Li, Zhe Zhang
Publication date
2020/10/5
Journal
IEEE Transactions on Geoscience and Remote Sensing
Volume
59
Issue
7
Pages
5630-5641
Publisher
IEEE
Description
The ground-based radar quantitative precipitation estimation (QPE) faces various challenges including the overestimation caused by the bright band (BB) in the stratiform region and the underestimation in mountainous areas when the terrain-enhanced precipitation occurs at the levels below ground-based radar measurements. The vertical precipitation structure provided by spaceborne radars, i.e., the Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) and the Global Precipitation Measurement mission (GPM) Dual-frequency PR (DPR), is valuable for mitigating the above problems. Since the spaceborne radars and ground-based radars usually operate in different frequencies, e.g., the TRMM PR and the KuPR of GPM DPR work in Ku-band (13.8 and 13.6 GHz, respectively) and the ground-based radars in western China work in C-band (5.4 GHz), the reflectivity conversion from Ku-band to C-band is …
Total citations
20212022202321