Authors
Hong Zhu, Geoffroy Hautier, Umut Aydemir, Zachary M Gibbs, Guodong Li, Saurabh Bajaj, Jan-Hendrik Pöhls, Danny Broberg, Wei Chen, Anubhav Jain, Mary Anne White, Mark Asta, G Jeffrey Snyder, Kristin Persson, Gerbrand Ceder
Publication date
2015
Journal
Journal of Materials Chemistry C
Volume
3
Issue
40
Pages
10554-10565
Publisher
Royal Society of Chemistry
Description
A new group of thermoelectric materials, trigonal and tetragonal XYZ2 (X, Y: rare earth or transition metals, Z: group VI elements), the prototype of which is TmAgTe2, is identified by means of high-throughput computational screening and experiment. Based on density functional theory calculations, this group of materials is predicted to attain high zT (i.e. ∼1.8 for p-type trigonal TmAgTe2 at 600 K). Among approximately 500 chemical variants of XYZ2 explored, many candidates with good stability and favorable electronic band structures (with high band degeneracy leading to high power factor) are presented. Trigonal TmAgTe2 has been synthesized and exhibits an extremely low measured thermal conductivity of 0.2–0.3 W m−1 K−1 for T > 600 K. The zT value achieved thus far for p-type trigonal TmAgTe2 is approximately 0.35, and is limited by a low hole concentration (∼1017 cm−3 at room temperature). Defect …
Total citations
20162017201820192020202120222023202481521191213161011