Authors
Takenori Furuya, Takumi Nakai, Masato Imai, Masaharu Kameda
Publication date
2021/12/7
Journal
Sensors
Volume
21
Issue
24
Pages
8177
Publisher
MDPI
Description
Degradation of fast response pressure-sensitive paints (PSP) above room temperature is a serious problem for PSP measurements in high-temperature environments. A standard polymer-ceramic PSP (PC-PSP) composed of platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorphenyl)-porphyrin (PtTFPP), titania particles and poly(isobutyl methacrylate) (polyIBM) was characterized to elucidate the degradation mechanism. Applying a two-gate lifetime-based method, the PC-PSP has sufficient pressure and temperature sensitivities even at 100 °C, while the luminescence intensity significantly decreases during the test. Subsequent measurements on thermal and photostability as well as luminescence spectra reveal that the main cause of the degradation is the photodegradation of PtTFPP due to direct exposure of the dye molecules to the atmosphere. In order to suppress such degradation, a small amount of urethane resin is added to the dye solution as a simple additional step in the preparation of PC-PSP. The addition of the urethane resin significantly reduces the degradation of the PSP, although its time response is slightly slower than that of the standard PC-PSP.
Total citations
2022202313