Authors
Victor Chubukov, John James Desmarais, George Wang, Leanne Jade G Chan, Edward EK Baidoo, Christopher J Petzold, Jay D Keasling, Aindrila Mukhopadhyay
Publication date
2017/1/5
Journal
NPJ systems biology and applications
Volume
3
Issue
1
Pages
1-7
Publisher
Nature Publishing Group
Description
A major aspect of microbial metabolic engineering is the development of chassis hosts that have favorable global metabolic phenotypes, and can be further engineered to produce a variety of compounds. In this work, we focus on the problem of decoupling growth and production in the model bacterium Escherichia coli, and in particular on the maintenance of active metabolism during nitrogen-limited stationary phase. We find that by overexpressing the enzyme PtsI, a component of the glucose uptake system that is inhibited by α-ketoglutarate during nitrogen limitation, we are able to achieve a fourfold increase in metabolic rates. Alternative systems were also tested: chimeric PtsI proteins hypothesized to be insensitive to α-ketoglutarate did not improve metabolic rates under the conditions tested, whereas systems based on the galactose permease GalP suffered from energy stress and extreme sensitivity to …
Total citations
201820192020202120222023202447791061
Scholar articles
V Chubukov, JJ Desmarais, G Wang, LJG Chan… - NPJ systems biology and applications, 2017