Authors
Hamed Azami, Alberto Fernández, Javier Escudero
Publication date
2017/5/2
Journal
Medical & Biological Engineering & Computing
Description
Multiscale entropy (MSE) has been a prevalent algorithm to quantify the complexity of biomedical time series. Recent developments in the field have tried to alleviate the problem of undefined MSE values for short signals. Moreover, there has been a recent interest in using other statistical moments than the mean, i.e., variance, in the coarse-graining step of the MSE. Building on these trends, here we introduce the so-called refined composite multiscale fuzzy entropy based on the standard deviation (RCMFEσ) and mean (RCMFEμ) to quantify the dynamical properties of spread and mean, respectively, over multiple time scales. We demonstrate the dependency of the RCMFEσ and RCMFEμ, in comparison with other multiscale approaches, on several straightforward signal processing concepts using a set of synthetic signals. The results evidenced that the RCMFEσ and RCMFEμ values are more stable and …
Total citations
201620172018201920202021202220232024117213235133213