Authors
Jinxing Ma, Calvin He, Di He, Changyong Zhang, T David Waite
Publication date
2018/11/1
Journal
Water research
Volume
144
Pages
296-303
Publisher
Pergamon
Description
While flow-electrode capacitive deionization (FCDI) is a potential alternative to brackish and/or sea water desalination, there is limited understanding of both the fate of ions following migration across the ion exchange membranes and the mechanisms responsible for ion separation. In this study, we investigate the desalting performance of an FCDI system operated over a range of conditions. Results show that although ion transport as a result of electrodialysis is inevitable in FCDI (and is principally responsible for pH excursion in the flow electrode), the use of high carbon content ensures that a high proportion of the charge and counterions are retained in the electrical double layers of the flowing carbon particles, even at high charging voltages (e.g., 2.0 V) during the deionization process. Estimation of the portions of sodium and chloride ions adsorbed in the flow electrode after migration through the membranes …
Total citations
20182019202020212022202320244193425332716