Authors
Hong Nhan Nong, Tobias Reier, Hyung-Suk Oh, Manuel Gliech, Paul Paciok, Thu Ha Thi Vu, Detre Teschner, Marc Heggen, Valeri Petkov, Robert Schlögl, Travis Jones, Peter Strasser
Publication date
2018/11
Journal
Nature Catalysis
Volume
1
Issue
11
Pages
841-851
Publisher
Nature Publishing Group UK
Description
The electro-oxidation of water to oxygen is expected to play a major role in the development of future electrochemical energy conversion and storage technologies. However, the slow rate of the oxygen evolution reaction remains a key challenge that requires fundamental understanding to facilitate the design of more active and stable electrocatalysts. Here, we probe the local geometric ligand environment and electronic metal states of oxygen-coordinated iridium centres in nickel-leached IrNi@IrOx metal oxide core–shell nanoparticles under catalytic oxygen evolution conditions using operando X-ray absorption spectroscopy, resonant high-energy X-ray diffraction and differential atomic pair correlation analysis. Nickel leaching during catalyst activation generates lattice vacancies, which in turn produce uniquely shortened Ir–O metal ligand bonds and an unusually large number of d-band holes in the iridium oxide …
Total citations
2019202020212022202320243674101889694