Authors
Riasat Islam, Mohamed Bennasar, Kevin Nicholas, Kate Button, Simon Holland, Paul Mulholland, Blaine Price, Mohammad Al-Amri
Publication date
2020/6/16
Journal
JMIR mHealth and uHealth
Volume
8
Issue
6
Pages
e17872
Publisher
JMIR Publications Inc., Toronto, Canada
Description
Background: Movement analysis in a clinical setting is frequently restricted to observational methods to inform clinical decision making, which has limited accuracy. Fixed-site, optical, expensive movement analysis laboratories provide gold standard kinematic measurements; however, they are rarely accessed for routine clinical use. Wearable inertial measurement units (IMUs) have been demonstrated as comparable, inexpensive, and portable movement analysis toolkits. MoJoXlab has therefore been developed to work with generic wearable IMUs. However, before using MoJoXlab in clinical practice, there is a need to establish its validity in participants with and without knee conditions across a range of tasks with varying complexity.
Objective: This paper aimed to present the validation of MoJoXlab software for using generic wearable IMUs for calculating hip, knee, and ankle joint angle measurements in the sagittal, frontal, and transverse planes for walking, squatting, and jumping in healthy participants and those with anterior cruciate ligament (ACL) reconstruction.
Methods: Movement data were collected from 27 healthy participants and 20 participants with ACL reconstruction. In each case, the participants wore seven MTw2 IMUs (Xsens Technologies) to monitor their movement in walking, jumping, and squatting tasks. The hip, knee, and ankle joint angles were calculated in the sagittal, frontal, and transverse planes using two different software packages: Xsens’ validated proprietary MVN Analyze and MoJoXlab. The results were validated by comparing the generated waveforms, cross-correlation (CC), and normalized root mean square error …
Total citations
202020212022202320241651