Authors
Benoît Boachon, C Robin Buell, Emily Crisovan, Natalia Dudareva, Nicolas Garcia, Grant Godden, Laura Henry, Mohamed O Kamileen, Heather Rose Kates, Matthew B Kilgore, Benjamin R Lichman, Evgeny V Mavrodiev, Linsey Newton, Carlos Rodriguez-Lopez, Sarah E O'Connor, Douglas Soltis, Pamela Soltis, Brieanne Vaillancourt, Krystle Wiegert-Rininger, Dongyan Zhao
Publication date
2018/8/6
Journal
Molecular plant
Volume
11
Issue
8
Pages
1084-1096
Publisher
Elsevier
Description
The evolution of chemical complexity has been a major driver of plant diversification, with novel compounds serving as key innovations. The species-rich mint family (Lamiaceae) produces an enormous variety of compounds that act as attractants and defense molecules in nature and are used widely by humans as flavor additives, fragrances, and anti-herbivory agents. To elucidate the mechanisms by which such diversity evolved, we combined leaf transcriptome data from 48 Lamiaceae species and four outgroups with a robust phylogeny and chemical analyses of three terpenoid classes (monoterpenes, sesquiterpenes, and iridoids) that share and compete for precursors. Our integrated chemical–genomic–phylogenetic approach revealed that: (1) gene family expansion rather than increased enzyme promiscuity of terpene synthases is correlated with mono- and sesquiterpene diversity; (2) differential expression …
Total citations
20182019202020212022202320243142117242220