Authors
Min Liu, Mengxia Liu, Xiaoming Wang, Sergey M Kozlov, Zhen Cao, Phil De Luna, Hongmei Li, Xiaoqing Qiu, Kang Liu, Junhua Hu, Chuankun Jia, Peng Wang, Huimin Zhou, Jun He, Miao Zhong, Xinzheng Lan, Yansong Zhou, Zhiqiang Wang, Jun Li, Ali Seifitokaldani, Cao Thang Dinh, Hongyan Liang, Chengqin Zou, Daliang Zhang, Yang Yang, Ting-Shan Chan, Yu Han, Luigi Cavallo, Tsun-Kong Sham, Bing-Joe Hwang, Edward H Sargent
Publication date
2019/7/17
Journal
Joule
Volume
3
Issue
7
Pages
1703-1718
Publisher
Cell Press
Description
Defect sites are often proposed as key active sites in the design of catalysts. A promising strategy for improving activity is to achieve a high density of homogeneously dispersed atomic defects; however, this is seldom accomplished in metals. We hypothesize that vacancy-rich catalysts could be obtained through the synthesis of quantum dots (QDs) and their electrochemical reduction during the CO2 reduction reaction (CO2RR). Here, we report that QD-derived catalysts (QDDCs) with up to 20 vol % vacancies achieve record current densities of 16, 19, and 25 mAcm−2 with high faradic efficiencies in the electrosynthesis of formate, carbon monoxide, and ethylene at low potentials of –0.2, –0.3, and –0.9 V versus reversible hydrogen electrode (RHE), respectively. The materials are stable after 80 hr of CO2RR. These CO2RR performances in aqueous solution surpass those of previously reported catalysts by 2× …
Total citations
20192020202120222023202432535171610
Scholar articles
M Liu, M Liu, X Wang, SM Kozlov, Z Cao, P De Luna… - Joule, 2019