Authors
Seonghyeon Gong, Changhoon Lee
Publication date
2020/3
Journal
Electronics
Volume
9
Issue
3
Pages
521
Publisher
Multidisciplinary Digital Publishing Institute
Description
The convergence of fifth-generation (5G) communication and the Internet-of-Things (IoT) has dramatically increased the diversity and complexity of the network. This change diversifies the attacker’s attack vectors, increasing the impact and damage of cyber threats. Cyber threat intelligence (CTI) technology is a proof-based security system which responds to these advanced cyber threats proactively by analyzing and sharing security-related data. However, the performance of CTI systems can be significantly compromised by creating and disseminating improper security policies if an attacker intentionally injects malicious data into the system. In this paper, we propose a blockchain-based CTI framework that improves confidence in the source and content of the data and can quickly detect and eliminate inaccurate data for resistance to a Sybil attack. The proposed framework collects CTI by a procedure validated through smart contracts and stores information about the metainformation of data in a blockchain network. The proposed system ensures the validity and reliability of CTI data by ensuring traceability to the data source and proposes a system model that can efficiently operate and manage CTI data in compliance with the de facto standard. We present the simulation results to prove the effectiveness and Sybil-resistance of the proposed framework in terms of reliability and cost to attackers.
Total citations
202020212022202320241108144