Authors
Jin Yang, Amitava Acharjya, Meng‐Yang Ye, Jabor Rabeah, Shuang Li, Zdravko Kochovski, Sol Youk, Jérôme Roeser, Julia Grüneberg, Christopher Penschke, Michael Schwarze, Tianyi Wang, Yan Lu, Roel van de Krol, Martin Oschatz, Reinhard Schomäcker, Peter Saalfrank, Arne Thomas
Publication date
2021/9/1
Journal
Angewandte Chemie International Edition
Volume
60
Issue
36
Pages
19797-19803
Description
Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor‐acceptor (D‐A) type imine‐linked COFs can produce hydrogen with a rate as high as 20.7 mmol g−1 h−1 under visible light irradiation, upon protonation of their imine linkages. A significant red‐shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff‐base moieties in the imine‐linked COFs, are responsible for the …
Total citations
20212022202320244528660
Scholar articles
J Yang, A Acharjya, MY Ye, J Rabeah, S Li… - Angewandte Chemie International Edition, 2021