Authors
Manuel K Rausch, Martin Genet, Jay D Humphrey
Publication date
2017/6/14
Journal
Journal of Biomechanics
Volume
58
Pages
227-231
Publisher
Elsevier
Description
Continued advances in computational power and methods have enabled image-based biomechanical modeling to become an important tool in basic science, diagnostic and therapeutic medicine, and medical device design. One of the many challenges of this approach, however, is identification of a stress-free reference configuration based on in vivo images of loaded and often prestrained or residually stressed soft tissues and organs. Fortunately, iterative methods have been proposed to solve this inverse problem, among them Sellier’s method. This method is particularly appealing because it is easy to implement, convergences reasonably fast, and can be coupled to nearly any finite element package. By means of several practical examples, however, we demonstrate that in its original formulation Sellier’s method is not optimally fast and may not converge for problems with large deformations. Fortunately, we …
Total citations
201820192020202120222023202475881077