Authors
Mufan Li, Zipeng Zhao, Tao Cheng, Alessandro Fortunelli, Chih-Yen Chen, Rong Yu, Qinghua Zhang, Lin Gu, Boris V Merinov, Zhaoyang Lin, Enbo Zhu, Ted Yu, Qingying Jia, Jinghua Guo, Liang Zhang, William A Goddard III, Yu Huang, Xiangfeng Duan
Publication date
2016/12/16
Journal
Science
Volume
354
Issue
6318
Pages
1414-1419
Publisher
American Association for the Advancement of Science
Description
Improving the platinum (Pt) mass activity for the oxygen reduction reaction (ORR) requires optimization of both the specific activity and the electrochemically active surface area (ECSA). We found that solution-synthesized Pt/NiO core/shell nanowires can be converted into PtNi alloy nanowires through a thermal annealing process and then transformed into jagged Pt nanowires via electrochemical dealloying. The jagged nanowires exhibit an ECSA of 118 square meters per gram of Pt and a specific activity of 11.5 milliamperes per square centimeter for ORR (at 0.9 volts versus reversible hydrogen electrode), yielding a mass activity of 13.6 amperes per milligram of Pt, nearly double previously reported best values. Reactive molecular dynamics simulations suggest that highly stressed, undercoordinated rhombus-rich surface configurations of the jagged nanowires enhance ORR activity versus more relaxed surfaces.
Total citations
2017201820192020202120222023202492186221235213191176110