Authors
Thomas Dewers, Peter Eichhubl, Ben Ganis, Steven Gomez, Jason Heath, Mohamad Jammoul, Peter Kobos, Ruijie Liu, Jonathan Major, Ed Matteo, Pania Newell, Alex Rinehart, Steven Sobolik, John Stormont, Mahmoud Reda Taha, Mary Wheeler, Deandra White
Publication date
2018/1/1
Journal
International Journal of Greenhouse Gas Control
Volume
68
Pages
203-215
Publisher
Elsevier
Description
Desirable outcomes for geologic carbon storage include maximizing storage efficiency, preserving injectivity, and avoiding unwanted consequences such as caprock or wellbore leakage or induced seismicity during and post injection. To achieve these outcomes, three control measures are evident including pore pressure, injectate chemistry, and knowledge and prudent use of geologic heterogeneity. Field, experimental, and modeling examples are presented that demonstrate controllable GCS via these three measures. Observed changes in reservoir response accompanying CO2 injection at the Cranfield (Mississippi, USA) site, along with lab testing, show potential for use of injectate chemistry as a means to alter fracture permeability (with concomitant improvements for sweep and storage efficiency). Further control of reservoir sweep attends brine extraction from reservoirs, with benefit for pressure control …
Total citations
20182019202020212022202320242343311
Scholar articles
T Dewers, P Eichhubl, B Ganis, S Gomez, J Heath… - International Journal of Greenhouse Gas Control, 2018